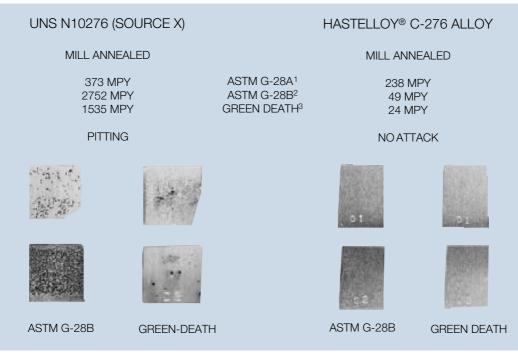


Excellent corrosionresistance to both oxidizing and reducing media and excellent resistance to localized corrosion attack.


Contents

Principal Features	3
Chemical Composition	3
Physical Properties	4
Dynamic Modulus of Elasticity	4
Formability	4
Impact Strength	5
Tensile Data	5
Hardness	5
Aqueous Corrosion Data	6
Localized Corrosion Data	8
Isocorrosion Diagrams	11
Availability	15
Sales Office Addresses	16

HASTELLOY® : THE NAME TO TRUST

In aggressive/corrosive service, when nothing else works, many industries have traditionally turned to HASTELLOY® C-276 alloy. Many years of outstanding performance in a variety of industrial applications have confirmed the advantages of using the alloy. Materials engineers in the chemical processing and other industries have grown accustomed to specifying its high performance based on laboratory testing, field trials and/or prior experience.

Some "generic" alloy N10276 products fail to measure up to the performance industry expects from HASTELLOY C-276 alloy which is produced via exacting processes, and backed by years of experience in chemistry control, thermal-mechanical processing, testing and qualifications to rigid standards.

¹ ASTM G-28A = 50% $H_2SO_4 + 42g/I Fe_2 (SO_4)_3$ (Boiling)

² ASTM G-28B = 23% H_2SO_4 + 1.2% HCI + 1% Fe_2CI_3 + 1% $CuCI_2$ (Boiling)

³ GREEN DEATH = 11.5% H₂SO₄ + 1.2% HCl + 1% Fe₂Cl₃ + 1% CuCl₂ (Boiling)

When the alloy is specified by the UNS Number, discerning questions should be asked for assurance of HASTELLOY C-276 alloy performance:

- Does the product possess the clean, homogeneous microstructure so important for good resistance to aqueous corrosion?
- How does the product perform in tough environments (e.g., rigorous pitting conditions) for which this material is most often specified?
- Is the corrosion resistance of the welded product, in a discriminating test, up to par?

© 1997 by Haynes International, Inc.

PRINCIPAL FEATURES

Excellent Resistance to Corrosion

HASTELLOY® C-276 alloy is a nickel-molybdenum-chromium wrought allov that is generally considered a versatile corrosionresistant alloy. C-276 alloy is an improved wrought version of alloy C in that it usually doesn't need to be solution heat-treated after welding and has vastly improved fabricability. This alloy resists the formation of grain-boundary precipitates in the weld heataffected zone, thus making it suitable for most chemical process applications in the as-welded condition. However, in environments where attack of the C-276 alloy weld joint is experienced, C-22[®] weld filler materials should be considered (See page 14).

C-276 alloy has excellent resistance to localized corrosion and to both oxidizing and reducing media. Because of its versatility, C-276 alloy can be used where "upset" conditions are likely to occur or in multipurpose plants. HASTELLOY C-276 alloy has excellent resistance to a wide variety of chemical process on irromente including strong.

environments, including strong oxidizers such as ferric and cupric

chlorides, hot contaminated media (organic and inorganic), chlorine, formic and acetic acids, acetic anhydride, and seawater and brine solutions. It is used in flue gas desulfurization systems because of its excellent resistance to sulfur compounds and chloride ions encountered in most scrubbers. C-276 alloy has excellent resistance to pitting and to stresscorrosion cracking. It is also one of the few materials that withstands the corrosive effects of wet chlorine gas, hypochlorite and chlorine dioxide.

Fabricated by a Variety of Methods

HASTELLOY C-276 alloy can be forged, hot-upset and impact extruded. Although the alloy tends to work-harden, it can be successfully deep-drawn, spun, press formed or punched. All of the common methods of welding can be used to weld HASTELLOY C-276 alloy, although the oxyacetylene and submerged arc processes are not recommended when the fabricated item is intended for use in corrosion service. Special precautions should be taken to avoid excessive heat in-put.

Detailed fabricating information is

available in the booklet, "Fabrication of HAYNES® Corrosion-Resistant Alloys." Ask for booklet H-2010.

Available in Wrought Form

HASTELLOY C-276 alloy is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe, tubing, pipe fittings, flanges and fittings.

Heat-Treatment

Wrought forms of HASTELLOY C-276 alloy are furnished in the solution heat-treated condition unless otherwise specified. C-276 alloy is normally solution heattreated at 2050°F (1121°C) and rapid quenched. Parts which have been hot-formed should be solution heat-treated prior to final fabrication or installation, if possible.

ASME Boiler and Pressure Vessel Code

HASTELLOY C-276 alloy plate, sheet, strip, bar, tubing and pipe are covered by ASME specifications SB-574, SB-575, SB-619, SB-622 and SB-626 under UNS number N10276.

NOMINAL CHEMICAL COMPOSITION, (CONSISTS OF ABOUT) WEIGHT PERCENT*

Ni	Со	Cr	Мо	W	Fe	Si	Mn	С	Others
57	2.5**	14.5-	15.0-	3.0-	4.0-	0.08**	1.0**	0.01**	V-0.35**
		16.5	17.0	4.5	7.0				P-0.025 S-0.010**

*The undiluted deposited chemical composition of alloy C-276 covered electrodes has 0.02 percent maximum carbon, 0.20 percent maximum silicon, 0.03 percent maximum phosphorus and 0.015 percent maximum sulfur.

**Maximum

AVERAGE PHYSICA	L PROPERTIES			
Physical Property	Temperature,°F	British Units	Temperature,°C	Metric Units
Density	72	0.321 lb./in³	22	8.89 g/cm ³
Melting Range	2415-2500		1323-1371	
Electrical Resistivity	75	51 microhm-in.	24	1.30 microhm-m
Mean Coefficient of	75-200	6.2 microinches/in°F	24-93	11.2 x 10 [−] 6m/m•K
Thermal Expansion	75-400	6.7 microinches/in°F	24-204	12.0 x 10 ^{−6} m/m•K
	75-600	7.1 microinches/in°F	24-316	12.8 x 10 ⁶ m/m•K
	75-800	7.3 microinches/in°F	24-427	13.2 x 10 [−] 6m/m•K
	75-1000	7.4 microinches/in°F	24-538	13.4 x 10 ⁻⁶ m/m•K
Thermal Conductivity	-270	50 Btu-in./ft.²-hr°F	-168	7.2 W/m•K
	-100	60 Btu-in./ft.²-hr°F	-73	8.6 W/m•K
	0	65 Btu-in./ft.²-hr°F	-18	9.4 W/m•K
	100	71 Btu-in./ft.²-hr°F	38	10.2 W/m•K
	200	77 Btu-in./ft.²-hr°F	93	11.1 W/m•K
	400	90 Btu-in./ft.²-hr°F	204	13.0 W/m•K
	600	104 Btu-in./ft.2-hr°F	316	15.0 W/m•K
	800	117 Btu-in./ft.²-hr°F	427	16.9 W/m•K
	1000	132 Btu-in./ft.2-hr°F	538	19.0 W/m•K
Specific Heat (Calculated)	Room	0.102 Btu/lb°F	Room	427 J/Kg•K

AVERAGE DYNAMIC MODULUS OF ELASTICITY

Form	Condition	Test Temperatures °F (°C)	Average Dynamic Modulus of Elasticity, 10 ⁶ psi (GPa)
Plate	Heat-treated	Room	29.8 (205)
(1121°C)	at 2050°F	400 (204)	28.3 (195)
	Rapid Quenched	600 (316)	27.3 (188)
	·	800 (427)	26.4 (182)
		1000 (538)	25.5 (176)

FORMABILITY

Form	Condition	Average Olsen Cup in.	Depth mm	
Sheet, 0.044 in. (1.1mm) thick	Heat-treated at 2050°F (1121°C), Rapid Quenched	0.48*	12.2*	

*Average of six tests.

AVERAGE IMPACT STRENGTH, PLATE

Condition	"U" Notch Imp at –320°F ftlb.	act Strength (–196°C) J	
Solution Heat-Treated at: 2050°F (1121°C), Rapid Quenched	263*	357	
Aged 100 hrs. at: 500°F (260°C) 1000°F (538°C)	250 96	339 130	
Aged 1000 hrs. at: 1000°F (538°C)	64	87	

Cryogenic Notch Toughness

This "U" notch specimen of alloy C-276 did not break under the hammer blow of the impact tester at $-320^{\circ}F$ (-196°C).

*Five of six specimens did not break.

AVERAGE TENSILE DATA, SOLUTION HEAT-TREATED

Form	Test Temperature °F (°C)	Ultimate Tensile Strength Ksi*	Yield Strength at 0.2% offset, Ksi*	Elongation in 2 in. (50.8mm) %
Sheet 0.078 iin.	Room	114.9	51.6	61
(2.0mm) thick	400 (204)	100.6	42.0	59
	600 (316)	98.8	35.9	68
	800 (427)	94.3	32.7	67
Sheet, 0.094 in.	400 (204)	101.0	39.9	58
(2.4mm) thick	600 (316)	97.6	33.5	64
	800 (427)	93.5	29.7	64
Sheet, 0.063 to	400 (204) ¹	100.8	42.1	56
0.187 in. (1.6 to	600 (316) ²	97.0	37.7	64
4.7mm) thick	800 (427) ²	95.0	34.8	65
	1000 (538) ²	88.9	33.8	60
Plate, 3/16 to	400 (204) ³	98.9	38.2	61
1 in. (4.8 to	600 (316) ³	94.3	34.1	66
25.4mm) thick	800 (427) ³	91.5	32.7	60
	1000 (538) ³	87.2	32.8	59
Plate, 1 in.	Room	113.9	52.9	59
(25.4mm) thick	600 (316)	96.3	36.2	63
	800 (427)	94.8	30.5	61

*Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

1-Average of 25 tests. 2-Average of 34-36 tests. 3-Average of 9-11 tests.

AVERAGE ROOM TEMPERATURE HARDNESS

Form	Hardness, Rockwell	
Sheet**	Rb 90	
Plate***	Rb 87	

**Average of 49 tests.

***Average of 35 tests.

COMPARATIVE AQUEOUS CORROSION DATA

	Concen- tration,				_	
Media	percent by weight	Test Temp., °F (°C)	C-276 alloy	Average Corrosio C-22 [®] alloy	on Rate per year, C-4 alloy	mils* 625 alloy
Acetic Acid	99	Boiling	<1	Nil	Nil	<1
Ferric Chloride	10	Boiling	2	1	140	7689
Formic Acid	88	Boiling	2	< 1	3	9
Hydrochloric Acid	1	Boiling	10	3	36	1
	1.5	Boiling	29	11	64	353
	2	194 (90)	1	Nil	31	Nil
	2	Boiling	51	61	85	557
	3	194 (90)	12	<1	34	72
	3	Boiling	70	84	44	296
	10	Boiling	288	400	228	642
Hydrochloric Acid	1	200 (93)	41	2	10	238
+ 42 g/l Fe ₂ (SO ₄) ₃	5	150 (66)	5	2	3	2
Hydrochloric Acid + 2% HF	5	158 (70)	26	59	34	123
Hydrofluoric Acid	2	158 (70)	9	9	17	20
	5	158 (70)	10	14	15	16
P ₂ O ₅ (Commercial	38	185 (85)	9	2	-	1
Grade)	44	240 (116)	100	21	-	23
	52	240 (116)	33	11	-	12
P ₂ 0 ₅ + 2000 ppm Cl	38	185 (85)	12	1	-	2
P ₂ 0 ₅ + 0.5% HF	38	185 (85)	45	7	_	9
Nitric Acid	10	Boiling	17	<1	14	1
	65	Boiling	888	53	217	20
Nitric Acid + 6% HF	5	140 (60)	207	67	204	73
Nitric Acid + 25% H ₂ SO ₄ + 4% NaCl	5	Boiling	64	12	97	713
Nitric Acid + 1% HCl	5	Boiling	8	< 1	11	1
Nitric Acid + 2.5% HCl	5	Boiling	21	2	26	<1
Nitric Acid + 15.8% HCl	9	126 (52)	33	4	114	>10,000

*To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE AQUEOUS CORROSION DATA CONTINUED

	Concen- tration,	-				
Media	percent by weight	Test Temp., °F (°C)	C-276 alloy	Average Corros C-22 [®] alloy	ion Rate per yea C-4 alloy	r, mils* 625 alloy
Sulfuric Acid	10	Boiling	23	11	31	46
	20	150 (66)	<1	<1	<1	<1
	20	174 (79)	3	1	2	<1
	20	Boiling	42	33	36	124
	30	150 (66)	<1	1	<1	<1
	30	174 (79)	4	3	3	<1
	30	Boiling	55	64	73	238
	40	100 (38)	<1	<1	<1	<1
	40	150 (66)	1	<1	10	17
	40	174 (79)	10	6	15	35
	50	100 (38)	Nil	<1	<1	1
	50	150 (66)	4	1	13	25
	50	174 (79)	12	16	25	52
	60	100(38)	< 1	<1	<1	<1
	70	100 (38)	Nil	Nil	2	<1
	80	100 (38)	<1	Nil	<1	<1
Sulfuric Acid +	5	Boiling	42	26	49	151
0.1% HCI						
Sulfuric Acid + 0.5% HCl	5	Boiling	49	61	91	434
Sulfuric Acid + 1% HCl	10	158 (70)	11	<1	24	121
Sulfuric Acid + 1% HCl	10	194 (90)	45	93	66	326
Sulfuric Acid + 1% HCl	10	Boiling	116	225	192	869
Sulfuric Acid + 2% HF	10	Boiling	22	29	26	55
Sulfuric Acid + 200 ppm Cl–	25	158 (70)	12	11	37	110
Sulfuric Acid + 200 ppm Cl–	25	Boiling	186	226	182	325
Sulfuric Acid + 1.2% HCl +	11.5	Boiling	24	3	1020	1664
1% FeCl ₃ +						
1% Cu Cl ₂						
Sulfuric Acid + 1.2% HCl + 1% FeCl ₃ + 1% Cu Cl ₂ (ASTMG28B)	23	Boiling	55	7	2294	3847
Sulfuric Acid + 42 g/l Fe ₂ (SO ₄) ₃ (ASTMG28A)	50	Boiling	240	24	167	23

*To convert mils per year (mpy) to mm per year, divide by 40.

CREVICE-CORROSION DATA IN 10% FERRIC CHLORIDE AT ROOM TEMPERATURE FOR 10 DAYS

Alloy	Number of Attacked Crevices*	Maximum Depth of Penetration, mils**	
HASTELLOY® C-276 alloy	0	0	
HASTELLOY C-22® alloy	0	0	
HAYNES® 625 alloy	11	3	
Type 317LM Stainless Steel	20	12	
Alloy No. 904L	23	19	
20Cb-3 [®] alloy	24	76	
Alloy 825	24	125	

*Maximum possible number of crevices was 24.

**To convert mils per year (mpy) to mm per year, divide by 40.

20Cb-3 is a trademark of Carpenter Technology Corporation.

COMPARATIVE CREVICE-CORROSION TEST DATA IN 10% FERRIC CHLORIDE

	Average Corrosion Rate, mils per year*						
Alloy	77°F (25°C)	122°F (50°C)	167°F (75°C)				
HASTELLOY C-276 alloy	0.2	0.2	1.4				
HASTELLOY C-22 alloy	0.1	0.1	0.5				
HASTELLOY C-4 alloy	0.3	0.5	20				
FERRALIUM [®] 255 alloy	0.4	811	663				
HAYNES 625 alloy	1.5	124	510				
20Cb-3 alloy	205	380	700				
Type 316L Stainless Steel	312	460	780				
Alloy 825	730	707	680				

*Average corrosion rate on duplicate samples even though most corrosion occurred under crevice. Tests were for 100 hours with grooved block. To convert mils per year (mpy) to mm per year, divide by 40.

COMPARATIVE STRESS-CORROSION CRACKING DATA

Alloy	Time,hrs. to crack in 45% Magnesium Chloride at 309°F (154°C)		
Type 304 Stainless Steel	1-2		
Type 316L Stainless Steel	1-2		
20Cb-3 alloy	22		
Alloy 825	46		
HAYNES 625 alloy	No cracks - 1000		
HASTELLOY G-30 [®] alloy	No cracks - 1000		
HASTELLOY C-276 alloy	No cracks - 1000		
HASTELLOY C-22 alloy	No cracks - 1000		

COMPARATIVE IMMERSION CRITICAL PITTING AND CRITICAL CREVICE-CORROSION TEMPERATURES IN OXIDIZING NaCI-HCI SOLUTION

The chemical composition of the solution used in this test is as follows: 4% NaCl + 0.1% Fe₂(SO₄)₃ + 0.021 M HCI. This solution contains 24,300 ppm chlorides and is acidic (pH2).

In both pitting and crevice-

corrosion testing the solution temperature was varied in 5°C increments to determine the lowest temperature at which pittingcorrosion initiated (observed by examination at a magnification of 40X of duplicate samples) after a

24-hour exposure period (Pitting Temperature), and the lowest temperature at which crevicecorrosion initiated in a 100-hour exposure period (Crevice-Corrosion Temperature).

°C >150	°F >302	°C 102	°F
	>302	102	
150		102	212 (Boiling)
150	302	80	176
140	284	50	122
90	194	50	122
75	167	_	-
50	122	35	95
45	113	20	68
35	95	15	59
25	77	10	50
25	77	-5	23
25	68	-5	23
20	68	-5	23
	90 75 50 45 35 25 25 25 25 25	140 284 90 194 75 167 50 122 45 113 35 95 25 77 25 68	140 284 50 90 194 50 75 167 - 50 122 35 45 113 20 35 95 15 25 77 10 25 68 -5

20Cb-3 is a trademark of Carpenter Technology Corporation.

COMPARATIVE IMMERSION CREVICE-CORROSION TEMPERATURES IN 6% FERRIC CHLORIDE SOLUTION (ASTM G48; MTI Project)

The chemical composition of the solution used in this test is as follows: 6% Fe₂Cl₃. In the crevice-corrosion test, the

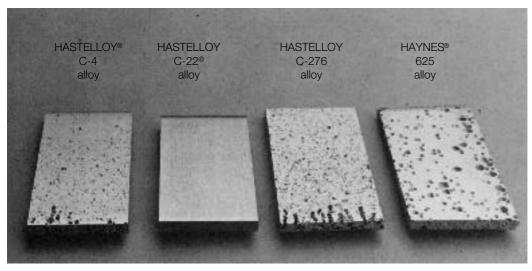
solution temperature was varied in 2.5°C increments to determine the lowest temperature at which crevice corrosion initiated in a 24hour exposure period (Crevice-Corrosion Temperature).

Crevice-Corrosion Temperature						
Alloy	C°	°F				
HASTELLOY C-22 alloy	>100	> 212				
HASTELLOY C-276 alloy	95	203				
HASTELLOY C-4 alloy	42.5	109				
HAYNES 625 alloy	40	104				
HASTELLOY G-30 alloy	30	86				
Nickel 200	30	86				
FERRALIUM 255 alloy	45	113				
Alloy 904L	5	41				
Type 317 Stainless Steel	2.5	37				

COMPARATIVE CRITICAL PITTING TEMPERATURES IN OXIDIZING H₂SO₄-HCI SOLUTION

The chemical composition of the solution used in this test is as follows: 11.5% H₂SO₄ + 1.2% HCl + 1% FeCl₃ + 1% CuCl₂. This test environment is a severely oxidizing acid solution which is used to evaluate the resistance of

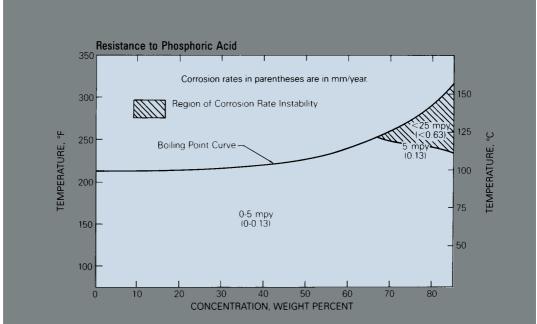
alloys to localized corrosion. It is considerably more aggressive than the oxidizing NaCI-HCI test. Experiments were performed in increments of solution temperature of 5 deg. C for a 24hour exposure period to determine the critical pitting temperature, i.e. the lowest temperature at which pitting corrosion initiated (observed at a magnification of 40X of duplicate samples.)

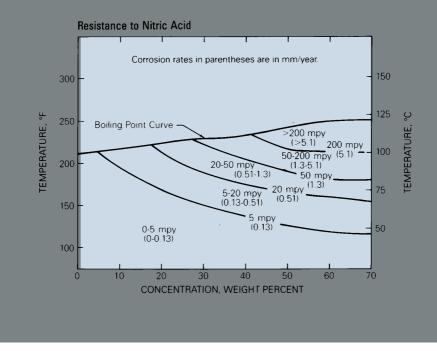

Critical Pitt	ing Temperature	
°C	°F	
120	248	
110	230	
90	194	
75	167	
	° C 120 110 90	120 248 110 230 90 194

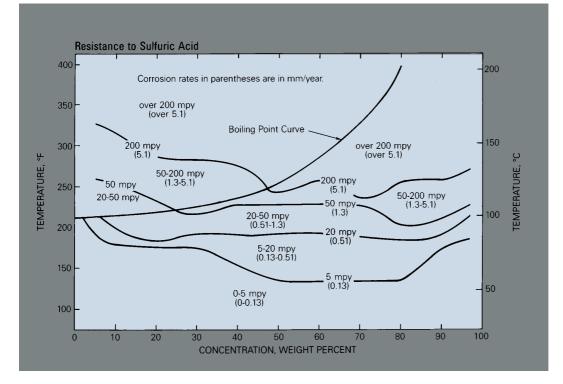
HASTELLOY ALLOYS EXCEL IN PITTING RESISTANCE

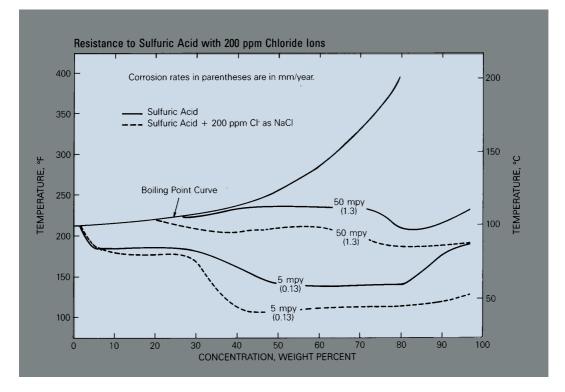
As a class, C-type alloys excel in pitting corrosion resistance.

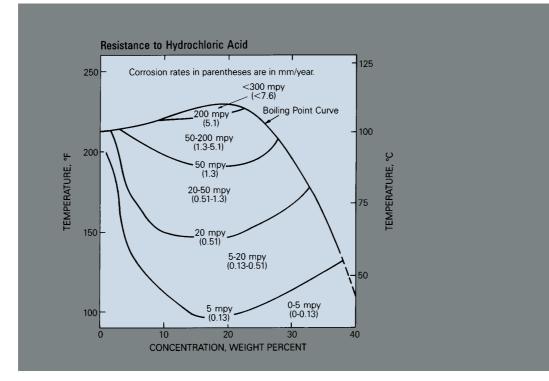
However, comparison tests in a severe pitting environment show

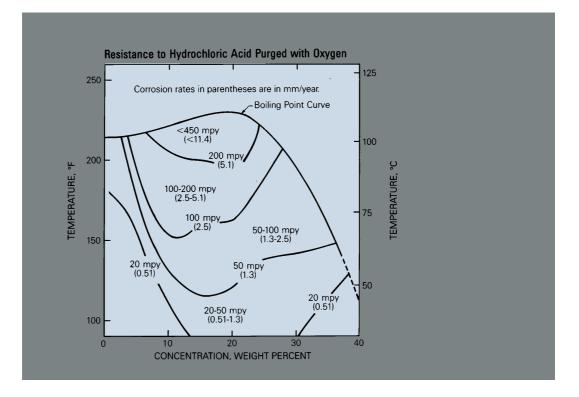

HASTELLOY C-22 alloy to be in a class by itself.

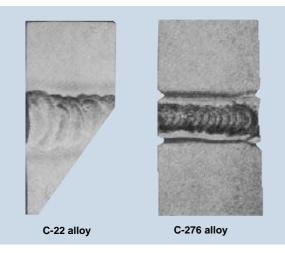

Samples were subjected to a solution of 11.5% H_2SO_4 + 1.2% HCl + 1% $FeCl_3$ + 1% $CuCl_2$. Solutions for coupons 625 and C-4 were at 102°C, while C-276 and C-22 were at 125°C.


ISOCORROSION DIAGRAMS


The isocorrosion diagrams shown on this and subsequent pages were plotted using data obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.

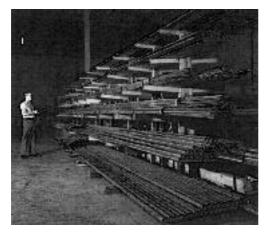



*All test specimens were heat-treated at 2050°F (1121°C), rapid quenched and in the unwelded condition.



Improved Corrosion Resistance of HASTELLOY® C-22® Weldments

Corrosion behavior of welded samples showing the improved performance of C-22 alloy over that of C-276 alloy.


Weld overlays of HASTELLOY C-22 alloy, used to protect C-276 alloy weldments, can be seen on bleach plant mixer.

Service and Availability are Paramount at Haynes International, Inc.

Over 2-million pounds of finished-goods inventory of high performance alloys is maintained by Haynes International, Inc. This is believed to be the largest in the industry. Seven world-wide service centers are linked by a computer "browsing" system which

Supplies of corrosion-resistant alloy plate are stockpiled in the Haynes International, Inc. Houston service center to serve the surrounding chemical process industry.

Pipe and tubing are other items available for immediate delivery from Houston.


enables any one center to access availability information from all of the others. Haynes International is dedicated, through this network, to the prompt fulfillment of customer requirements.

One-half inch x 12 ft. shear at Windsor, Connecticut service center supplies customers in the northeast with sheet and light plate, cut-to-size.

Large stocks of alloy mill products are also maintained at the Kokomo service center.

Billet awaits shipment to nearby forge shop at Haynes International, Inc. service center in Anaheim, California.

STANDARD PRODUCTS

By Brand or Alloy Designation:

HAYNES

HASTELLOY® Family of Corrosion-Resistant Alloys

B-2, B-3[®], C-4, C-22[®], C-276, C-2000[®], D-205[™], G-3, G-30[®], G-50[®] and N

HASTELLOYFamily of Heat-Resistant Alloys

S, W and X

HAYNES® Family of Heat-Resistant Alloys

25, R-41, 75, HR-120[®], 150, HR-160[®], 188, 214[™], 230[®], 230-W[™], 242[™], 263, 556[™], 625, 718, X-750, MULTIMET[®] and WASPALOY

Corrosion-Wear Resistant Alloy

ULTIMET®

Wear-Resistant Alloy

6B

HAYNES Titanium Alloy Tubular

Ti-3Al-2.5V

Standard Forms:

Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, Pipe Fittings, Flanges, Fittings, Welding Wire and Coated Electrodes

Properties Data:

The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, we do not make any warranty or assume any legal liability or responsibility for its accuracy, completeness or usefulness, nor do we represent that its use would not infringe upon private rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health effects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc.

For More Information Contact:

Kokomo, Indiana 46904-9013 1020 W. Park Avenue P.O. Box 9013 Tel: 765-456-6012 800-354-0806 FAX: 765-456-6905

Anaheim, California 92806

Stadium Plaza 1520 South Sinclair Street Tel: 714-978-1775 800-531-0285 FAX: 714-978-1743

Arcadia, Louisiana 71001-9701

3786 Second Street Tel: 318-263-9571 800-648-8823 FAX: 318-263-8088 Windsor, Connecticut 06095 430 Hayden Station Road Tel: 860-688-7771 800-426-1963 FAX: 860-688-5550

Houston, Texas 77041

The Northwood Industrial Park 12241 FM 529 Tel: 713-937-7597 800-231-4548 FAX: 713-937-4596

England

Haynes International, Ltd. P.O. Box 10 Parkhouse Street Openshaw Manchester, M11 2ER Tel: 44-161-230-7777 FAX: 44-161-223-2412

France

Haynes International, S.A.R.L. Zi des Bethunes 10 rue de Picardie 95310 Saint-Ouen L'Aumone Tel: 33-1-34-48-3100 FAX: 33-1-30-37-8022

Italy

Haynes International, S.R.L. Viale Brianza, 8 20127 Milano Tel: 39-2-2614-1331 FAX: 39-2-282-8273

Switzerland

Nickel Contor AG Hohlstrasse 534 CH-8048 Zurich Tel: 41-1-434-7080 FAX: 41-1-431-8787

www.haynesintl.com